Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.019
1.
Circ Res ; 134(6): 711-726, 2024 03 15.
Article En | MEDLINE | ID: mdl-38484035

The brain is a complex organ, fundamentally changing across the day to perform basic functions like sleep, thought, and regulating whole-body physiology. This requires a complex symphony of nutrients, hormones, ions, neurotransmitters and more to be properly distributed across the brain to maintain homeostasis throughout 24 hours. These solutes are distributed both by the blood and by cerebrospinal fluid. Cerebrospinal fluid contents are distinct from the general circulation because of regulation at brain barriers including the choroid plexus, glymphatic system, and blood-brain barrier. In this review, we discuss the overlapping circadian (≈24-hour) rhythms in brain fluid biology and at the brain barriers. Our goal is for the reader to gain both a fundamental understanding of brain barriers alongside an understanding of the interactions between these fluids and the circadian timing system. Ultimately, this review will provide new insight into how alterations in these finely tuned clocks may lead to pathology.


Blood-Brain Barrier , Brain , Blood-Brain Barrier/physiology , Homeostasis/physiology , Circadian Rhythm , Biology
2.
Adv Drug Deliv Rev ; 208: 115274, 2024 May.
Article En | MEDLINE | ID: mdl-38452815

Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.


Blood-Brain Barrier , Central Nervous System Diseases , Humans , Ultrasonography/methods , Blood-Brain Barrier/physiology , Brain/diagnostic imaging , Brain/physiology , Drug Delivery Systems/methods , Central Nervous System Diseases/diagnostic imaging , Central Nervous System Diseases/drug therapy
3.
Circ Res ; 134(6): 727-747, 2024 03 15.
Article En | MEDLINE | ID: mdl-38484027

The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB. Our discussion includes efflux transporters and the molecular timing mechanisms that regulate their activities. A significant focus of this review is the potential implications of chronotherapy, leveraging our knowledge of circadian rhythms for improving drug delivery to the brain. Understanding the temporal changes in BBB can lead to optimized timing of drug administration, to enhance therapeutic efficacy for neurological disorders while reducing side effects. By elucidating the interplay between circadian rhythms and drug transport across the BBB, this review offers insights into innovative therapeutic interventions.


Blood-Brain Barrier , Circadian Clocks , Blood-Brain Barrier/physiology , Circadian Rhythm , Brain , Biological Transport , Drug Delivery Systems , Circadian Clocks/physiology
4.
Cell Commun Signal ; 22(1): 132, 2024 02 17.
Article En | MEDLINE | ID: mdl-38368403

Abnormal inflammatory states in the brain are associated with a variety of brain diseases. The dynamic changes in the number and function of immune cells in cerebrospinal fluid (CSF) are advantageous for the early prediction and diagnosis of immune diseases affecting the brain. The aggregated factors and cells in inflamed CSF may represent candidate targets for therapy. The physiological barriers in the brain, such as the blood‒brain barrier (BBB), establish a stable environment for the distribution of resident immune cells. However, the underlying mechanism by which peripheral immune cells migrate into the brain and their role in maintaining immune homeostasis in CSF are still unclear. To advance our understanding of the causal link between brain diseases and immune cell status, we investigated the characteristics of immune cell changes in CSF and the molecular mechanisms involved in common brain diseases. Furthermore, we summarized the diagnostic and treatment methods for brain diseases in which immune cells and related cytokines in CSF are used as targets. Further investigations of the new immune cell subtypes and their contributions to the development of brain diseases are needed to improve diagnostic specificity and therapy.


Brain Diseases , Brain , Humans , Blood-Brain Barrier/physiology , Brain Diseases/diagnosis , Brain Diseases/therapy , Biological Transport , Homeostasis
5.
Yi Chuan ; 46(2): 109-125, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38340002

The choroid plexus is composed of epithelial cells situated on the basal layer. The tight junctions between adjacent choroid plexus epithelial cells establish the blood-cerebrospinal fluid barrier. This barrier, in conjunction with the blood-brain barrier, is crucial for the homeostasis of the brain microenvironment. The choroid plexus epithelium secretes cerebrospinal fluid, growth factors, neuropeptides, and lipids into the ventricles and also serves as a gateway for immune cells to enter the brain. The pathophysiology of aging and neurodegenerative diseases remains largely enigmatic, with an increasing body of research linking the choroid plexus to the etiology of these age-related disorders. In this review, we summarize the known relationship between the choroid plexus epithelium and age-related diseases, aiming to provide new therapeutic clues for these disorders.


Blood-Brain Barrier , Choroid Plexus , Blood-Brain Barrier/physiology , Brain , Choroid Plexus/metabolism , Epithelial Cells/metabolism , Humans
6.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article En | MEDLINE | ID: mdl-38397013

Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.


Iron Overload , Neurodegenerative Diseases , Humans , Brain , Blood-Brain Barrier/physiology , Iron , Iron Overload/drug therapy , Neurodegenerative Diseases/drug therapy
7.
CNS Neurol Disord Drug Targets ; 23(3): 315-330, 2024.
Article En | MEDLINE | ID: mdl-36999187

The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier's foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson's disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.


Blood-Brain Barrier , Parkinson Disease , Humans , Blood-Brain Barrier/physiology , Parkinson Disease/pathology , Brain/pathology , Central Nervous System , Biological Transport/physiology
8.
J Neurosci Methods ; 402: 110029, 2024 02.
Article En | MEDLINE | ID: mdl-38042304

BACKGROUND: The blood-brain barrier (BBB) is a specialized layer between blood vessels and tissue in the brain, which is comprised of a neuro-glia-vascular (NGV) unit, thus play a vital role in various brain diseases. NEW METHOD: We developed the in vitro NGV units by co-culturing brain microvascular endothelial cells (BMECs; bEnd.3) and primary neural stem cells extracted from subventricular zone of adult mice. This approach was designed to mimic the RNA profile conditions found in the microvessels of a mouse brain and confirmed through various comparative transcriptome analyses. RESULTS: Optimal NGV unit development was achieved by adjusting cell density-dependent co-culture ratios. Specifically, the morphogenic development and neuronal association of astrocyte endfeet were well observed in the contact region with BMECs in the NGV unit. Through transcriptome analysis, we compared co-cultured bEnd.3/NSCs with monocultured bEnd.3 or NSCs and additionally compared them with previously reported mouse brain vascular tissue to show that this NGV unit model is a suitable in vitro model for neurological disease such as Alzheimer's disease (AD). COMPARISON WITH EXISTING METHOD(S): This in vitro NGV unit was formed from neural stem cells and vascular cells in the brain of adult mice, not embryos. It is very useful for studying brain disease mechanisms by identifying proteins and genes associated with diseases progress. CONCLUSIONS: We suggest that this simple in vitro NGV model is appropriate to investigate the relationship between BBB changes and pathological factors in the fields of neurovascular biology and cerebrovascular diseases including AD.


Neural Stem Cells , Animals , Mice , Alzheimer Disease/pathology , Blood-Brain Barrier/physiology , Brain , Coculture Techniques , Endothelial Cells/physiology , Gene Expression Profiling , Neuroglia/pathology
9.
Fluids Barriers CNS ; 20(1): 87, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38017530

The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.


Blood-Brain Barrier , Brain Diseases , Humans , Blood-Brain Barrier/physiology , Brain , Drug Delivery Systems/methods
10.
Lab Chip ; 23(20): 4565-4578, 2023 10 10.
Article En | MEDLINE | ID: mdl-37772328

Current basement membrane (BM) mimics used for modeling endothelial and epithelial barriers in vitro do not faithfully recapitulate key in vivo physiological properties such as BM thickness, porosity, stiffness, and fibrous composition. Here, we use networks of precisely arranged nanofibers to form ultra-thin (∼3 µm thick) and ultra-porous (∼90%) BM mimics for blood-brain barrier modeling. We show that these nanofiber networks enable close contact between endothelial monolayers and pericytes across the membrane, which are known to regulate barrier tightness. Cytoskeletal staining and transendothelial electrical resistance (TEER) measurements reveal barrier formation on nanofiber membranes integrated within microfluidic devices and transwell inserts. Further, significantly higher TEER values indicate a biological benefit for co-cultures formed on the ultra-thin nanofiber membranes. Our BM mimic overcomes critical technological challenges in forming co-cultures that are in proximity and facilitate cell-cell contact, while still being constrained to their respective sides. We anticipate that our nanofiber networks will find applications in drug discovery, cell migration, and barrier dysfunction studies.


Nanofibers , Porosity , Blood-Brain Barrier/physiology , Coculture Techniques , Basement Membrane
11.
Bioinformatics ; 39(10)2023 10 03.
Article En | MEDLINE | ID: mdl-37713469

MOTIVATION: Efficient assessment of the blood-brain barrier (BBB) penetration ability of a drug compound is one of the major hurdles in central nervous system drug discovery since experimental methods are costly and time-consuming. To advance and elevate the success rate of neurotherapeutic drug discovery, it is essential to develop an accurate computational quantitative model to determine the absolute logBB value (a logarithmic ratio of the concentration of a drug in the brain to its concentration in the blood) of a drug candidate. RESULTS: Here, we developed a quantitative model (LogBB_Pred) capable of predicting a logBB value of a query compound. The model achieved an R2 of 0.61 on an independent test dataset and outperformed other publicly available quantitative models. When compared with the available qualitative (classification) models that only classified whether a compound is BBB-permeable or not, our model achieved the same accuracy (0.85) with the best qualitative model and far-outperformed other qualitative models (accuracies between 0.64 and 0.70). For further evaluation, our model, quantitative models, and the qualitative models were evaluated on a real-world central nervous system drug screening library. Our model showed an accuracy of 0.97 while the other models showed an accuracy in the range of 0.29-0.83. Consequently, our model can accurately classify BBB-permeable compounds as well as predict the absolute logBB values of drug candidates. AVAILABILITY AND IMPLEMENTATION: Web server is freely available on the web at http://ssbio.cau.ac.kr/software/logbb_pred/. The data used in this study are available to download at http://ssbio.cau.ac.kr/software/logbb_pred/dataset.zip.


Blood-Brain Barrier , Brain , Blood-Brain Barrier/physiology , Biological Transport , Permeability , Central Nervous System Agents
12.
J Biomech Eng ; 145(8)2023 08 01.
Article En | MEDLINE | ID: mdl-37338461

The blood-brain barrier (BBB) is a dynamic regulatory barrier at the interface of blood circulation and the brain parenchyma, which plays a critical role in protecting homeostasis in the central nervous system. However, it also significantly impedes drug delivery to the brain. Understanding the transport across BBB and brain distribution will facilitate the prediction of drug delivery efficiency and the development of new therapies. To date, various methods and models have been developed to study drug transport at the BBB interface, including in vivo brain uptake measurement methods, in vitro BBB models, and mathematic brain vascular models. Since the in vitro BBB models have been extensively reviewed elsewhere, we provide a comprehensive summary of the brain transport mechanisms and the currently available in vivo methods and mathematic models in studying the molecule delivery process at the BBB interface. In particular, we reviewed the emerging in vivo imaging techniques in observing drug transport across the BBB. We discussed the advantages and disadvantages associated with each model to serve as a guide for model selection in studying drug transport across the BBB. In summary, we envision future directions to improve the accuracy of mathematical models, establish noninvasive in vivo measurement techniques, and bridge the preclinical studies with clinical translation by taking the altered BBB physiological conditions into consideration. We believe these are critical in guiding new drug development and precise drug administration in brain disease treatment.


Blood-Brain Barrier , Brain , Blood-Brain Barrier/physiology , Biological Transport/physiology , Homeostasis , Models, Theoretical
13.
Elife ; 122023 05 16.
Article En | MEDLINE | ID: mdl-37191285

Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.


Endothelial Cells , Zebrafish , Animals , Blood-Brain Barrier/physiology , Brain/blood supply , Capillaries , Endothelial Cells/physiology , Neovascularization, Physiologic/genetics , Zebrafish/genetics
14.
Sci Rep ; 13(1): 6757, 2023 04 25.
Article En | MEDLINE | ID: mdl-37185578

Focused Ultrasound (FUS) paired with systemically-injected microbubbles (µB) is capable of transiently opening the blood-brain barrier (BBBO) for noninvasive and targeted drug delivery to the brain. FUS-BBBO is also capable of modulating the neuroimmune system, further qualifying its therapeutic potential for neurodegenerative diseases like Alzheimer's disease (AD). Natural aging and AD impose significant strain on the brain and particularly the BBB, modifying its structure and subsequently, its functionality. The emerging focus on treating neurodegenerative diseases with FUS-BBBO necessitates an investigation into the extent that age and AD affect the BBB's response to FUS. FUS-BBBO was performed with a 1.5-MHz, geometrically focused transducer operated at 450 kPa and paired with a bolus microbubble injection of 8 × 108 µB/mL. Here we quantify the BBBO, BBB closing (BBBC) timeline, and BBB permeability (BBBP) following FUS-BBBO in male mice with and without AD pathology, aged 10 weeks, one year, or two years. The data presented herein indicates that natural aging and AD pathology may increase initial BBBO volume by up to 34.4% and 40.7% respectively, extend BBBC timeline by up to 1.3 and 1.5 days respectively, and increase BBBP as measured by average Ktrans values up to 80% and 86.1% respectively in male mice. This characterization of the BBB response to FUS-BBBO with age and AD further clarifies the nature and extent of the functional impact of these factors and may offer new considerations for planning FUS-BBBO interventions in aged and AD populations.


Alzheimer Disease , Ultrasonic Therapy , Male , Mice , Animals , Blood-Brain Barrier/physiology , Alzheimer Disease/drug therapy , Brain/diagnostic imaging , Brain/physiology , Biological Transport , Drug Delivery Systems , Microbubbles , Magnetic Resonance Imaging
15.
Neurobiol Dis ; 183: 106159, 2023 07.
Article En | MEDLINE | ID: mdl-37209923

Fluid homeostasis is fundamental for brain function with cerebral edema and hydrocephalus both being major neurological conditions. Fluid movement from blood into brain is one crucial element in cerebral fluid homeostasis. Traditionally it has been thought to occur primarily at the choroid plexus (CP) as cerebrospinal fluid (CSF) secretion due to polarized distribution of ion transporters at the CP epithelium. However, there are currently controversies as to the importance of the CP in fluid secretion, just how fluid transport occurs at that epithelium versus other sites, as well as the direction of fluid flow in the cerebral ventricles. The purpose of this review is to evaluate evidence on the movement of fluid from blood to CSF at the CP and the cerebral vasculature and how this differs from other tissues, e.g., how ion transport at the blood-brain barrier as well as the CP may drive fluid flow. It also addresses recent promising data on two potential targets for modulating CP fluid secretion, the Na+/K+/Cl- cotransporter, NKCC1, and the non-selective cation channel, transient receptor potential vanilloid 4 (TRPV4). Finally, it raises the issue that fluid secretion from blood is not constant, changing with disease and during the day. The apparent importance of NKCC1 phosphorylation and TRPV4 activity at the CP in determining fluid movement suggests that such secretion may also vary over short time frames. Such dynamic changes in CP (and potentially blood-brain barrier) function may contribute to some of the controversies over its role in brain fluid secretion.


Extracellular Fluid , TRPV Cation Channels , Brain , Blood-Brain Barrier/physiology , Cerebral Ventricles , Choroid Plexus
16.
Int J Mol Sci ; 24(9)2023 May 03.
Article En | MEDLINE | ID: mdl-37175890

The blood-brain barrier (BBB) comprises a highly specialised complex of cells within the neurovascular unit, and is responsible for tightly regulating homeostasis within the central nervous system, which is critical for maintaining neuronal function [...].


Blood-Brain Barrier , Brain , Blood-Brain Barrier/physiology , Central Nervous System , Biological Transport , Homeostasis
17.
Fluids Barriers CNS ; 20(1): 28, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37076875

BACKGROUND: Insulin transport across the blood-brain barrier (BBB) is a highly regulated, saturable process, known to be affected by many peripheral substrates including insulin itself and triglycerides. This is in contrast to insulin leakage into peripheral tissues. Whether the central nervous system (CNS) can control the rate of insulin uptake by brain remains to be determined. Insulin BBB interactions are impaired in Alzheimer's disease (AD) and CNS insulin resistance is widely prevalent in AD. Therefore, if CNS insulin controls the rate of insulin transport across the BBB, then the defective transport of insulin seen in AD could be one manifestation of the resistance to CNS insulin observed in AD. METHODS: We investigated whether enhancing CNS insulin levels or induction of CNS insulin resistance using an inhibitor of the insulin receptor altered the blood-to-brain transport of radioactively labeled insulin in young, healthy mice. RESULTS: We found that insulin injected directly into the brain decreased insulin transport across the BBB for whole brain and the olfactory bulb in male mice, whereas insulin receptor blockade decreased transport in female mice for whole brain and hypothalamus. Intranasal insulin, currently being investigated as a treatment in AD patients, decreased transport across the BBB of the hypothalamus. CONCLUSIONS: These results suggest CNS insulin can control the rate of insulin brain uptake, connecting CNS insulin resistance to the rate of insulin transport across the BBB.


Alzheimer Disease , Insulin Resistance , Male , Female , Mice , Animals , Insulin/pharmacology , Receptor, Insulin/physiology , Brain/physiology , Central Nervous System , Blood-Brain Barrier/physiology
18.
J Neurosci Methods ; 392: 109867, 2023 05 15.
Article En | MEDLINE | ID: mdl-37116621

The blood-brain barrier (BBB) is a protective cellular anatomical layer with a dynamic micro-environment, tightly regulating the transport of materials across it. To achieve in-vivo characteristics, an in-vitro BBB model requires the constituent cell types to be layered in an appropriate order. A cost-effective in-vitro BBB model is desired to facilitate central nervous system (CNS) drug penetration studies. Enhanced integrity of tight junctions observed during the in-vitro BBB establishment and post-experiment is essential in these models. We successfully developed an in-vitro BBB model mimicking the in-vivo cell composition and a distinct order of seeding primary human brain cells. Unlike other in-vitro BBB models, our work avoids the need for pre-coated plates for cell adhesion and provides better cell visualization during the procedure. We found that using bovine collagen-I coating, followed by bovine fibronectin coating and poly-L-lysine coating, yields better adhesion and layering of cells on the transwell membrane compared to earlier reported use of collagen and poly-L-lysine only. Our results indicated better cell visibility and imaging with the polyester transwell membrane as well as point to a higher and more stable Trans Endothelial Electrical Resistance values in this plate. In addition, we found that the addition of zinc induced higher claudin 5 expressions in neuronal cells. Dolutegravir, a drug used in the treatment of HIV, is known to appear in moderate concentrations in the CNS. Thus, dolutegravir was used to assess the functionality of the final model and cells. Using primary cells and an in-house coating strategy substantially reduces costs and provides superior imaging of cells and their tight junction protein expression. Our 4-cell-based BBB model is a suitable experimental model for the drug screening process.


Blood-Brain Barrier , Polylysine , Animals , Cattle , Humans , Blood-Brain Barrier/physiology , Cell Line , Polylysine/metabolism , Polylysine/pharmacology , Endothelial Cells , Microscopy, Confocal
19.
Neurobiol Dis ; 181: 106114, 2023 06 01.
Article En | MEDLINE | ID: mdl-37023830

The neurovascular unit (NVU) plays an essential role in regulating neurovascular coupling, which refers to the communication between neurons, glia, and vascular cells to control the supply of oxygen and nutrients in response to neural activity. Cellular elements of the NVU coordinate to establish an anatomical barrier to separate the central nervous system from the milieu of the periphery system, restricting the free movement of substances from the blood to the brain parenchyma and maintaining central nervous system homeostasis. In Alzheimer's disease, amyloid-ß deposition impairs the normal functions of NVU cellular elements, thus accelerating the disease progression. Here, we aim to describe the current knowledge of the NVU cellular elements, including endothelial cells, pericytes, astrocytes, and microglia, in regulating the blood-brain barrier integrity and functions in physiology as well as alterations encountered in Alzheimer's disease. Furthermore, the NVU functions as a whole, therefore specific labeling and targeting NVU components in vivo enable us to understand the mechanism mediating cellular communication. We review approaches including commonly used fluorescent dyes, genetic mouse models, and adeno-associated virus vectors for imaging and targeting NVU cellular elements in vivo.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Endothelial Cells , Blood-Brain Barrier/physiology , Brain/diagnostic imaging , Brain/blood supply , Astrocytes/physiology
20.
Environ Pollut ; 324: 121400, 2023 May 01.
Article En | MEDLINE | ID: mdl-36878275

Cadmium (Cd) is a non-biodegradable widespread environmental pollutant, which can cross the blood-brain barrier (BBB) and cause cerebral toxicity. However, the effect of Cd on the BBB is still unclear. In this study, a total of 80 (1-day-old) Hy-Line white variety chicks (20 chickens/group) were selected and randomly divided into four (4) groups: the control group (Con group) (fed with a basic diet, n = 20), the Cd 35 group (basic diet with 35 mg/kg CdCl2, n = 20), the Cd 70 group (basic diet with 70 mg/kg CdCl2, n = 20) and the Cd 140 group (basic diet with 140 mg/kg CdCl2, n = 20), and fed for 90 days. The pathological changes, factors associated with the BBB, oxidation level and the levels of Wingless-type MMTV integration site family, member 7 A (Wnt7A)/Wnt receptor Frizzled 4 (FZD4)/ß-catenin signaling axis-related proteins in brain tissue were detected. Cd exposure induced capillary damage and neuronal swelling, degeneration and loss of neurons. Gene Set Enrichment Analysis (GSEA) showed the weakened Wnt/ß-catenin signaling axis. The protein expression of the Wnt7A, FZD4, and ß-catenin was decreased by Cd expusure. Inflammation generation and BBB dysfunction were induced by Cd, as manifested by impaired tight junctions (TJs) and adherens junctions (AJs) formation. These findings underscore that Cd induced BBB dysfunction via disturbing Wnt7A/FZD4/ß-catenin signaling axis.


Blood-Brain Barrier , beta Catenin , Animals , Blood-Brain Barrier/physiology , beta Catenin/metabolism , Cadmium/toxicity , Cadmium/metabolism , Chickens/metabolism , Wnt Signaling Pathway/genetics
...